Letter to the Editor—A Note on Cutting-Plane Methods Without Nested Constraint Sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on central cutting plane methods for convex programming

Most cutting plane methods, like that of Kelley and Cheney and Goldstein solve a linear approximation (localization) of the problem, and then generate an additional cut to remove the linear program's optimal point. Other methods, like the \central cutting" plane methods, calculate a center of the linear approximation and then adjust the level of the objective, or separate the current center fro...

متن کامل

Localization and Cutting-Plane Methods

4 Some specific cutting-plane methods 12 4.1 Bisection method on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Center of gravity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 MVE cutting-plane method . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.4 Chebyshev center cutting-plane method . . . . . . . . . . . . . . . . . . . . . 16 4.5 ...

متن کامل

Cutting Plane Methods and Subgradient Methods

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of optimization pr...

متن کامل

A Note on Sets of Finite Perimeter in the Plane

The aim of this paper is to study the minimal perimeter problem for sets containing a fixed set E in R2 in a very general setting, and to give the explicit solution. This Article is Dedicated to Paolo Marcellini on the Occasion of His Sixtieth Birthday

متن کامل

CuniNG PLANE METHODS WITHOUT

General conditions are given for the convergence of a class of cutting-plane algorithms without requiring that the constraint sets for the subprobleras be sequentially nested. Conditions are given under which inactive constraints may be dropped after each subproblem. Procedures for generating cutting-planes include that of Kelley [4] and a generalization of that used by Zoutendijk [12] and Vein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research

سال: 1970

ISSN: 0030-364X,1526-5463

DOI: 10.1287/opre.18.6.1216